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Abstract. Motivated by the recent experiment at ENS [V. Bretin, S. Stock, Y. Seurin and, J. Dalibard,
Phys. Rev. Lett. 92, 050403 (2004)], we study a rotating (non-)interacting atomic Bose-Einstein condensate
confined in a harmonic-plus-Gaussian laser trap potential. By adjusting the amplitude of the Gaussian laser
potential, one can make quadratic-plus-quartic potential, purely quartic potential, and quartic-minus-
quadratic potential. We show that an interacting Bose-Einstein condensate confined in a harmonic-plus-
Gaussian laser trap breaks the rotational symmetry of the Hamiltonian when rotational frequency is greater
than one-half of the lowest energy surface mode frequency. We also show that by increasing the amplitude
of the Gaussian laser trap, a vortex appears in a slowly rotating Bose-Einstein condensate. Moreover,
one can also create a vortex in a slowly rotating non-interacting Bose-Einstein condensate confined in
harmonic-plus-Gaussian laser potential.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 05.30.Jp Boson systems

The rotation of a macroscopic quantum fluid exhibits
interesting counter-intuitive phenomena. For example,
an atomic interacting(repulsive) Bose-Einstein condensate
(BEC) confined in a rotating harmonic trap produces
quantized vortices for a sufficiently large rotation [1–3].
The theoretical calculation for Ωc based on purely ther-
modynamic arguments is significantly smaller than the ob-
served value ofΩc which is the order of ∼0.7ω0, where ω0 is
the radial trap frequency. The vortex formation of a har-
monically trapped atomic BEC is related to the dynamical
instability of the lowest energy surface mode excitations
whose energy scale is set by the harmonic potential [4].
Above a certain rotation frequency of a harmonically sym-
metric trapped interacting BEC, the system itself starts
deforming from a circular shape to an elliptic shape and
hence it breaks the original rotational symmetry of the
Hamiltonian. This has been predicted only for a harmon-
ically trapped BEC [5] and detected at the ENS experi-
ment which leads to the vortex nucleation [6]. The vortex
nucleation starts when the average angular momentum of
each particle is one which has been measured experimen-
tally [2].

The harmonically trapped BEC becomes singular
when the rotation frequency is equal or greater than the
harmonic trap frequency, because the outward centrifu-
gal force counteracts the inward force from the harmonic
trap. One can eliminate the singularity at Ω ≥ 1 by con-
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sidering an additional stiffer radial potential (say, quartic
potential for simplicity). There is a growing interest about
the effect of an anharmonic potential on the properties of
a rotating BEC [7–13]. In spite of the fact that the Ωc

in a harmonically trapped BEC calculated from the ther-
modynamic arguments does not match with the experi-
mental values, many authors have studied Ωc in a BEC
confined in quadratic-plus-quartic trap based on the ther-
modynamic arguments [8–11]. In this work, we show that
a vortex appears in a BEC confined in a quadratic-plus-
Gaussian laser potential due to the spontaneous shape de-
formation of the system as it is happens in a BEC confined
by harmonic trap only and calculate the correct critical ro-
tational frequency to create a single vortex. We also show
that by increasing the magnitude of the laser trap, a vor-
tex can nucleate in a slowly rotating Bose gas.

Recently, the quadratic-plus-quartic potential has been
achieved experimentally by superimposing a blue detuned
laser beam to the magnetic trap holding the atoms [15].
The effective external potential is
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y) is the deformation param-
eter due to the stirring potential which rotates the system
and creates an anisotropic potential in the xy plane. Also,
2ω2
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y and the potential created by the Gaussian
laser beam is
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At the ENS experimental set-up [15], the laser waist is
w = 25 µm and the amplitude of the laser beam is U0 ∼
1.242 × 10−30 J. The harmonic trap frequencies are ω0 =
2π×75.5 Hz and ωz = 2π×11 Hz. Typically, the size of a
condensate is the order of few µm. Since

√
2r/w < 1, one

can expand the Gaussian laser potential,

U(r) = U0e
− 2r2

w2 ∼ U0

(
1 − 2r2

w2
+

2r4

w4

)
. (3)

The resulting potential can be written as,

Vt(r̃) =
�ω0
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where the co-ordinates r̃, x̃, ỹ, and z̃ are in units of the
harmonic oscillator length a0 =

√
�/mω0 = 1.475 µm.

Here, k = 4U0/mω
2
0w

2 and λ = k(a0/w)2. For the given
values of the w,U0 and ω0 = 2π × 75.5 Hz, k = 0.24
and λ = 8.297 × 10−4 at the ENS experiment [15]. The
value of k renormalize the oscillator frequency (ω0) of
the magnetic trap and also the anharmonic term λ de-
pends on the value of k. At the ENS experiment, k is
small. In this paper, we are interested to study when k
is large. When k < 1, k = 1 and k > 1, the effective
potential is quadratic-plus-quartic potential, only quartic
potential and quartic-minus-quadratic potential, respec-
tively. If k > 1, the effective external potential becomes
Mexican hat structure. In principle, k ≥ 1 can be easily
obtain in the current experimental set up at ENS by in-
creasing U0 from U0 = 1.242×10−30 J to U0 ≥ 5×10−30 J.
For simplicity, we study quasi-2D system since the elon-
gated condensate expands radially and contracts axially
when it rotates rapidly. The equation of motion of the
condensate wave function ψ(�r) is described by the mean-
field Gross-Pitaevskii equation,

i�
∂ψ(�r)
∂t

=
[
− �

2

2m
∇2 + Vt(�r) + g2|ψ(�r)|2 −Ω0Lz

]
ψ(�r).

Here, g2 = 2
√

2π�ωzaaz [16] is the strength of the mean-
field interaction, a is the s-wave scattering length and az =√

�

mωz
. Also, Lz = xpy − ypx is the z-component of the

angular momentum operator and Ω0 is the trap rotation
frequency. When ε = 0, it preserves the circular symmetry
of the system.

One can write down the Lagrangian density corre-
sponding to the quasi-2D system as follows:
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Here, we use the time-dependent variational method to
study the properties of a rotating BEC confined in a
quadratic-plus-laser potential. In order to obtain the evo-
lution of the condensate we assume the most general
Gaussian wave function,

ψ (x̃, ỹ, t) = C(t)e−
1
2 [α(t)x̃2+β(t)ỹ2−2γ(t)x̃ỹ], (5)

where C(t) is the normalization constant. Further, α(t) =
α1(t)+iα2(t), β(t) = β1(t)+iβ2(t) and γ(t) = γ1(t)+iγ2(t)
are the time-dependent dimensionless complex variational
parameters. The α1 and β1 are inverse square of the con-
densate widths in x- and y-directions, respectively. The
above mentioned order parameter describes only the vor-
tex free condensate (irrotational system) as the phase
(S(x, y) = γxy) corresponds to the irrotational velocity
flow.

We obtain the variational Lagrangian L by substitut-
ing equation (5) into equation (4) and integrating the
Lagrangian density over the space co-ordinates,
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(6)

where D =
√
α1β1 − γ2

1 and P = 2
√

2/π(N − 1)a/az is
the dimensionless parameter that indicates the strength
of the mean-field interaction and it can be positive or
negative depending on the sign of the s-wave scattering
length a [14].

The variational energy of the rotating condensate at
equilibrium is given in terms of the inverse square width
of the condensate along the x- and y-directions and the
phase parameter δγ2,
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where Ω = Ω0/ω0. We have used the fact that α2 = β2 =
γ1 = 0 to obtain the above equation.

One can get the equilibrium value of the variational
parameters, α10 = X , β10 = Y and γ20 = Z by minimizing
the energy with respect to the variational parameters,
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and

Z = Ω
(Y −X)
(Y +X)

. (10)

Equations (8), (9) and (10) describes how the shape of the
condensate changes due to the change of the amplitude of
the laser beam as well as external rotation.

The average angular momentum per particle is
given by,

〈Lz〉
N�
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1
2
Z
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1
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− 1
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)
=
Ω

2
(1 − η)2

η(X + Y )
, (11)

where η = Y/X is the ratio of the square of the widths
along the x- and y-directions. Equation (11) explicitly
shows how the angular momentum is transfered to the
trapped BEC due to the shape deformation with the rota-
tion frequency. The vortex would appear when 〈Lz〉 = N�.
Therefore, one can estimate the critical angular frequency
to create a single vortex from the relation: 〈Lz〉 = N�.

First we calculate the quadrupole mode frequency of
BEC confined in a magnetic-plus-laser potential. We ex-
pand the Lagrangian in the following way: α = X + δα1,
β = Y + δβ1, and γ = δγ1. We keep only the second
order deviations from their equilibrium values. Then we
calculate the Lagrangian quadratic in the deviations and
using the Euler-Lagrangian equation of motion, we get the
following two coupled equations of δα1 and δβ1:
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For an isotropic trap, ε = 0, and we set δα1 = −δβ1 to
calculate the lowest energy quadrupole mode frequency
which is given by,

ω2
q = 4(1 − k) +

20λ
R0

− PR2
0, (14)

where R0 is the equilibrium radius of the system, and
this can be obtained from the real solution of the cubic
equation: (1 + P/2)R3

0 − (1 − k)R0 − 4λ = 0. The above
quadrupole frequency ωq is valid for all interaction (repul-
sive, attractive) strength. The quadrupole mode frequency
ωq vs. P for different values of k, i.e. for different config-
uration of the effective potential, is shown in Figure 1.

Figure 1 shows that when k < 1, the ωq decreases as
P increases and after a critical value of P , ωq start increas-
ing slowly. On the other hands, for k ≥ 1, ωq increases as
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Fig. 1. Plots of quadrupole mode frequency ωq vs. interac-
tion parameter P for k = 0.9, λ = 0.0031 (upper curve),
k = 1.0, λ = 0.0034 (middle curve) and k = 1.1, λ = 0.0038
(lower curve).
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Fig. 2. Plots of quadrupole mode frequency ωq vs. k for P = 0
(dot-dashed), 10 (dashed), 200 (solid).

P increases. The quadrupole mode frequency ωq vs. k for
different values of P is shown in Figure 2. For k = 0 = P ,
it reproduces the known result for the quadrupole mode
frequency of a harmonically trapped noninteracting BEC.
With the increasing of k, ωq of an ideal Bose gases is de-
creasing faster than the interacting cases.

The centrifugal term −ΩLz shifts the quadrupole
mode frequency by −2Ω. The quadrupole mode frequency
with mz = −2 is

ω−2 =

√
4(1 − k) +

20λ
R0

− PR2
0 − 2Ω. (15)

We will discuss the effect of the harmonic-plus-Gaussian
laser trap potential on the possibility of a vortex formation
in a slowly rotating BEC. Using the three coupled equa-
tions (8), (9) and (10), we get the following two coupled
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Fig. 3. The variation of η vs. the rotational frequency Ω for
P = 200, k = 0.9, and ε = 0.

polynomial equations:
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For simplicity, we put ε = 0 and solve those two coupled
equations numerically. We find that spontaneous defor-
mation occurs when the rotational frequency is greater
than one-half of the quadrupole mode frequency ωq, and
start transferring the angular momentum to the system
[see Eq. (11)]. This circular symmetry breaking is due to
the tendency against an instability of the lowest energy
surface mode frequency with mz = −2. The variation of
η with the rotational frequency Ω for ε = 0 and k = 0.9
is shown in Figure 3. The same analysis can also be done
for other values of k and P .

For k = 0 (only harmonic potential) and P is large,
one can produce a vortex when Ω ∼ 0.7. For k �= 0, the
critical rotational frequency (Ωc) to create a single vor-
tex is small (Ωc < 0.7) compared to harmonic trap case
(Ωc ∼ 0.7). By adjusting the strength of the Gaussian
laser beam, one can produce a vortex in a slowly rotat-
ing BEC. For a purely harmonic trapped ideal Bose gases,
the lowest energy surface mode frequency is 2ω0 and hence
instability will occur when Ω = ω0 at which the system
is destabilized. Therefore, there is no spontaneous shape
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Fig. 4. Critical rotational frequency Ωc vs. k for P = 200
(solid line) and P = 0 (dashed line).

deformation and hence a vortex can not appear in the
noninteracting gas confined by harmonic trap only. When
k �= 0, the the lowest energy surface mode frequency be-
comes less than 2ω0 and an instability will occur when
Ω < ω0 at which the system is stabilized. There is a spon-
taneous shape deformation and one can produce a vortex
in a slowly rotating noninteracting Bose gases confined in
a harmonic-plus-Gaussian laser trap.

Figure 4 shows how Ωc is decreasing with the param-
eter k for different values of P . As k increases, Ωc is also
decreasing. Hence there is a possibility of vortex formation
of a slowly rotating BEC if k is finite. When k < 0.8, Ωc is
small in the Thomas-Fermi regime compared to the non-
interacting case. When k > 0.8, Ωc is large in the Thomas-
Fermi regime compared to the non-interacting case. It im-
plies that the two-body interaction helps to create a vortex
when k < 0.8, but the two-body interaction do not help
when k > 0.8.

In this work, we have shown that by adjusting
amplitude of the Gaussian laser beam one can make
quadratic-plus-quartic potential, purely quartic poten-
tial and quartic-minus-quadratic potential. We have also
shown that an interacting BEC confined in a harmonic-
plus-Gaussian laser tarp breaks the rotational symmetry
of the Hamiltonian due to the instability of the lowest
energy surface mode. It is argued that by increasing the
amplitude of the Gaussian laser trap, a vortex can be cre-
ated in a slowly rotating interacting as well as noninter-
acting BECs.
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